88 research outputs found

    On challenges in training recurrent neural networks

    Full text link
    Dans un problème de prédiction à multiples pas discrets, la prédiction à chaque instant peut dépendre de l’entrée à n’importe quel moment dans un passé lointain. Modéliser une telle dépendance à long terme est un des problèmes fondamentaux en apprentissage automatique. En théorie, les Réseaux de Neurones Récurrents (RNN) peuvent modéliser toute dépendance à long terme. En pratique, puisque la magnitude des gradients peut croître ou décroître exponentiellement avec la durée de la séquence, les RNNs ne peuvent modéliser que les dépendances à court terme. Cette thèse explore ce problème dans les réseaux de neurones récurrents et propose de nouvelles solutions pour celui-ci. Le chapitre 3 explore l’idée d’utiliser une mémoire externe pour stocker les états cachés d’un réseau à Mémoire Long et Court Terme (LSTM). En rendant l’opération d’écriture et de lecture de la mémoire externe discrète, l’architecture proposée réduit le taux de décroissance des gradients dans un LSTM. Ces opérations discrètes permettent également au réseau de créer des connexions dynamiques sur de longs intervalles de temps. Le chapitre 4 tente de caractériser cette décroissance des gradients dans un réseau de neurones récurrent et propose une nouvelle architecture récurrente qui, grâce à sa conception, réduit ce problème. L’Unité Récurrente Non-saturante (NRUs) proposée n’a pas de fonction d’activation saturante et utilise la mise à jour additive de cellules au lieu de la mise à jour multiplicative. Le chapitre 5 discute des défis de l’utilisation de réseaux de neurones récurrents dans un contexte d’apprentissage continuel, où de nouvelles tâches apparaissent au fur et à mesure. Les dépendances dans l’apprentissage continuel ne sont pas seulement contenues dans une tâche, mais sont aussi présentes entre les tâches. Ce chapitre discute de deux problèmes fondamentaux dans l’apprentissage continuel: (i) l’oubli catastrophique d’anciennes tâches et (ii) la capacité de saturation du réseau. De plus, une solution est proposée pour régler ces deux problèmes lors de l’entraînement d’un réseau de neurones récurrent.In a multi-step prediction problem, the prediction at each time step can depend on the input at any of the previous time steps far in the past. Modelling such long-term dependencies is one of the fundamental problems in machine learning. In theory, Recurrent Neural Networks (RNNs) can model any long-term dependency. In practice, they can only model short-term dependencies due to the problem of vanishing and exploding gradients. This thesis explores the problem of vanishing gradient in recurrent neural networks and proposes novel solutions for the same. Chapter 3 explores the idea of using external memory to store the hidden states of a Long Short Term Memory (LSTM) network. By making the read and write operations of the external memory discrete, the proposed architecture reduces the rate of gradients vanishing in an LSTM. These discrete operations also enable the network to create dynamic skip connections across time. Chapter 4 attempts to characterize all the sources of vanishing gradients in a recurrent neural network and proposes a new recurrent architecture which has significantly better gradient flow than state-of-the-art recurrent architectures. The proposed Non-saturating Recurrent Units (NRUs) have no saturating activation functions and use additive cell updates instead of multiplicative cell updates. Chapter 5 discusses the challenges of using recurrent neural networks in the context of lifelong learning. In the lifelong learning setting, the network is expected to learn a series of tasks over its lifetime. The dependencies in lifelong learning are not just within a task, but also across the tasks. This chapter discusses the two fundamental problems in lifelong learning: (i) catastrophic forgetting of old tasks, and (ii) network capacity saturation. Further, it proposes a solution to solve both these problems while training a recurrent neural network

    Bridge Correlational Neural Networks for Multilingual Multimodal Representation Learning

    Full text link
    Recently there has been a lot of interest in learning common representations for multiple views of data. Typically, such common representations are learned using a parallel corpus between the two views (say, 1M images and their English captions). In this work, we address a real-world scenario where no direct parallel data is available between two views of interest (say, V1V_1 and V2V_2) but parallel data is available between each of these views and a pivot view (V3V_3). We propose a model for learning a common representation for V1V_1, V2V_2 and V3V_3 using only the parallel data available between V1V3V_1V_3 and V2V3V_2V_3. The proposed model is generic and even works when there are nn views of interest and only one pivot view which acts as a bridge between them. There are two specific downstream applications that we focus on (i) transfer learning between languages L1L_1,L2L_2,...,LnL_n using a pivot language LL and (ii) cross modal access between images and a language L1L_1 using a pivot language L2L_2. Our model achieves state-of-the-art performance in multilingual document classification on the publicly available multilingual TED corpus and promising results in multilingual multimodal retrieval on a new dataset created and released as a part of this work.Comment: Published at NAACL-HLT 201

    Structure Learning for Neural Module Networks

    Full text link
    Neural Module Networks, originally proposed for the task of visual question answering, are a class of neural network architectures that involve human-specified neural modules, each designed for a specific form of reasoning. In current formulations of such networks only the parameters of the neural modules and/or the order of their execution is learned. In this work, we further expand this approach and also learn the underlying internal structure of modules in terms of the ordering and combination of simple and elementary arithmetic operators. Our results show that one is indeed able to simultaneously learn both internal module structure and module sequencing without extra supervisory signals for module execution sequencing. With this approach, we report performance comparable to models using hand-designed modules

    Edge Replacement Grammars: A Formal Language Approach for Generating Graphs

    Full text link
    Graphs are increasingly becoming ubiquitous as models for structured data. A generative model that closely mimics the structural properties of a given set of graphs has utility in a variety of domains. Much of the existing work require that a large number of parameters, in fact exponential in size of the graphs, be estimated from the data. We take a slightly different approach to this problem, leveraging the extensive prior work in the formal graph grammar literature. In this paper, we propose a graph generation model based on Probabilistic Edge Replacement Grammars (PERGs). We propose a variant of PERG called Restricted PERG (RPERG), which is analogous to PCFGs in string grammar literature. With this restriction, we are able to derive a learning algorithm for estimating the parameters of the grammar from graph data. We empirically demonstrate on real life datasets that RPERGs outperform existing methods for graph generation. We improve on the performance of the state-of-the-art Hyperedge Replacement Grammar based graph generative model. Despite being a context free grammar, the proposed model is able to capture many of the structural properties of real networks, such as degree distributions, power law and spectral characteristics.Comment: To be presented at SIAM International Conference on Data Mining (SDM19). arXiv admin note: text overlap with arXiv:1802.08068, arXiv:1608.03192 by other author
    • …
    corecore